調査方法の比較
調查方法として，潜行目視，テレビカメラ，展開広角カメラ，画像認識型カメラ，浮遊式カメラの比較表を示す。また，点检•調查の日進料，費用算出根拠資料を参考資料に添付する。

	潜行目視	テレビカメラ	展開広角カメラ	画像認戠型カメラ	浮旄式カメラ
概略図					$0,0 .$
適用笙囲	管径：800～2000mm マンホール：両方のマンホールから退出できることを 条件とする。 スパン長：500m以下	管径：200～2000mm （小中口径： $200 \sim 800 \mathrm{~mm}$ ，大口径 $800 \sim 2000 \mathrm{~mm}$ ） スパン長：小中口径 100 m 以下，大口径 500 m 以下	管種：コンクリート管，塩ビ管，陶管管径：200～700mm マンホール：内徎 900 mm 以上 スパン長：200m以下	管種：コンクリート管 管径：200～700mm マンホール：内㪇 900 mm 以上 スパン長：500m以下	管洤：250～2000mm
適用条件	水深： 50 cm 以下 流速：管路内作業に支障がない流速	水深：管径の $1 / 4$ 以下 流速 ：テレビカメラの移動に支障がない流速	流速： $1.0 \mathrm{~m} / \mathrm{s}$ 以下 光ファイバー ：注意が必要（引き流し工法による施工 の場合走行が難しい） 道路幅員：作業帯範囲を確保できる幅員	水深：管径の半分まで 流速： $1.0 \mathrm{~m} / \mathrm{s}$ 以下 光ファイバー ：注意が必要（引き流し工法による施工 の場合走行か難しい） 道路幅員：作業帯筐囲を碓保できる幅員	水深：喫水面以上の高さが概ね 15 cm 以上 （管径の $1 / 5$ 程度以上：，浮流式カメラ調査機，管径 の $1 / 5$ 程度未満：率引式カメラ調査機）管内突起物：取付け管の突出しaランク相当がある場合調査不可
特徵	－管路内に直接調査員が入って目視によりその性状を把握する。 －調査員が管路内を歩行できない場合や有害ガス発生 のおそれがある場合など，管路内作業の安全が十分碓保できない場合は適用できない。	－管路内の全景を写す直視撮影と異状箇所などの局所 を写す側視撮影を行う。 －現場で異状個所の映像を確認し，異状ランクの判定 を行う。	- 継手部の側視調査が不要 - 現場において異状が確認された箇所で機器を停止し，異状ランクの確認を行う。 －室内作業において展開画像を用いて現場でのランク判定と毘賠がないか確認が可能である。 - 広角レンズの特性からたるみC の判定率が低い。 - 展開画像を用いた判定においては浸入水の判定が難 しいため，水跡や直視動画の確認が必要である。	- 継手，異状箇所ごとの側視調査が不要 - 現地での撮影画像から異状診断を行うことから現場 での異状診断が不要である。 - 電源を搭載しておう，長距離調查が可能 - 画像認識技術により，管内の異状䈏所を自動的に判別し検出することができる。 －複数スパンの連続走行が可能（段差や屈曲がない場合）である。 －bランク以上の判定が可能である。	－長距睢連続スパン調查が可能（段差や乱流箇所がな い場合）である。 －喫水面以上の管内面は詳細調査同等に不具合を調查 できる一方，水面下の健全性が碓認できない。（モル タル付着が調查できない。） －不具合の位置の特定ができない。（部分開削等の対策 を行ら場合，刘策位置が分からない）
	管径 $800 \sim 1500 \mathrm{~mm}: 500 \mathrm{~m} /$ 日管径 $1500 \sim 2000 \mathrm{~mm}$ ： $600 \mathrm{~m} /$ 日	```小中口径 ヒューム管, 塩ビ管: }300\textrm{m}/\mathrm{ 日 (陶管: 180m/日) 大口径 300m/日 (側視なし 600m/日:想定)```	$\begin{aligned} & 450 \mathrm{~m} / \text { 日 } \\ & (\text { スクリーニング時 : } 530 \mathrm{~m} / \text { 日 } * 3 \text {) } \end{aligned}$	走行可能： $480 \mathrm{~m} /$ 日＊${ }^{3}$ 走行不可能： $340 \mathrm{~m} /$ 日 $^{*}{ }^{3}$	700m／日＊＊
量 $\begin{gathered}\text { 報告書 } \\ \\ \text { 作成 }\end{gathered}$	1000m／日	大口径 $600 \mathrm{~m} /$ 日	$\begin{aligned} & 450 \mathrm{~m} / \text { 日 } \\ & \text { (スクリーニング時 : } 500 \mathrm{~m} / \text { 日 } * 3 \text {) } \end{aligned}$	1060m／日＊3	－
コスト （経費込： 税抜）	$900 \mathrm{~m} / \mathrm{m}^{* 5}$	小口径 $2,500 \mathrm{~m} / \mathrm{m}$（洗浄工含舀）	2， $090 \mathrm{H} / \mathrm{m}$（洗浄工含む） $\text { スクリーニング時 } 1,170 \mathrm{~m} / \mathrm{m} \text { (洗浄なし) }$	（参考） $1,820 \mathrm{~m} / \mathrm{m}^{* 1}$（洗浄工含き）	（参考） $1,600 \mathrm{~T} / \mathrm{m} \sim 1,700 \mathrm{~m} / \mathrm{m}^{* 2}$（洗净工含む）

※3．「B－DASH（管渠マネジメントシステム技術）ガイドライン 国土技術政策総合研究所」より，※4．実績平均値 ，※5． $900 \mathrm{H} / \mathrm{m}$（内径 800 mm 以上～ 1500 mm 未満）， $800 \mathrm{~m} / \mathrm{m}$（内径 1500 mm 以上）より，対象施設の加重平均から設定した。

6－6－2．一般環境下

本実施方針における，点検•調査計画の方針を表 6－6－3，表 6－6－4 に示す。

表 6－6－3．点検•調査方針

点検方法	点検頻度	調查方法	調査頻度
なし	-	小口径 $:$ テレビカメラ 中大口径 $:$ 潜行目視	1 回 $/ 20$ 年

表6－6－4．調査方法

調查方法	選定理由
小口径 $:$ テレビカメラ 中大口径 $:$ 潜行目視	すべての管路に対してテレビカメラ及び潜行目視に よる詳細調查を実施

調査判定基準を表 6－6－5～表 6－6－7 に，調査記録表を表 6－6－8～表6－6－10に添付する。

表 6－6－5．調査判定基準
【鉄筋コンクリート管等（遠心カ鉄筋コンクリート管含む）および陶管】

スパン全体で評価	項目	ランク	A	B	C
	管の腐食		鉄筋露出状態	骨材露出状態	表面が荒れた状態
	$\begin{gathered} \text { 上下方向のた } \\ \text { るみ } \end{gathered}$	管きょ内径 （ 700 mm 未満）	内径以上	内径の $1 / 2$ 以上	内径の $1 / 2$ 未満
		$\begin{gathered} \text { 管きょ内径 } \\ (700 \mathrm{~mm} \text { 以上 } \\ 1650 \mathrm{~mm} \text { 未満 }) \\ \hline \end{gathered}$	内径の $1 / 2$ 以上	内径の1／4以上	内径の $1 / 4$ 未満
		$\begin{gathered} \text { 管きょ内径 } \\ (1650 \mathrm{~mm} \text { 以上 } \\ 3000 \mathrm{~mm} \text { 以下) } \end{gathered}$	内径の1／4以上	内径の1／8以上	内径の $1 / 8$ 未満

注1段差は，mm単位で測定する。また，その他の異常（木片，他の埋設物等で上記にないもの）も調査する。
注 2 取付け管の突出し，油脂の付着，樹木根侵入，モルタル付着については，基本的に清掃等で除去できる項目とし，除去できない場合の調査判定基準とする。
注3 判定項目は，各自治体の地域特性を踏まえて追加しても良い。
出典：下水道維持管理指針 実務編－2014 年版－公益社団法人日本下水道協会

表 6－6－6．調査判定基準【硬質塩化ビニル管】

$\begin{gathered} \text { ス } \\ \text { でパ } \\ \text { 評ン } \\ \text { 価全 } \\ \text { 体 } \end{gathered}$	ランク		A	B	C
	項目	適用			
	$\begin{gathered} \text { 上下方向のた } \\ \text { るみ } \end{gathered}$	管きょ内径 （ 800 mm 以下）	内径以上	内径の1／2以上	内径の $1 / 2$ 末満

	ランク 項目	a	b	c
$\begin{aligned} & \text { 管 } \\ & \text { 一本 } \\ & \text { ご } \\ & \text { と } \\ & \text { に } \\ & \text { 評 } \\ & \text { 価 } \end{aligned}$	管の破損および軸方向クラック	亀甲上に割れている	－	－
		軸方向のクラック		
	管の円周方向クラック	円周方向のクラックで幅 5 mm 以上	円周方向のクラックで幅 2 mm 以上	円周方向のクラックで幅 2 mm 末満
	管の継手ズレ	脱却	接合長さの $1 / 2$ 以上	接合長さの $1 / 2$ 未満
	偏平	たわみ率 15% 以上の偏平	たわみ率 5% 以上の偏平	－
	変形※ （内面に突出し）	本管内径の $1 / 10$ 以上内面に突出し	本管内径の $1 / 10$ 末満内面に突出し	－
	浸入水	噴き出ている	流れている	にじんでいる
	取付け管の突出し	本管内径の $1 / 2$ 以上	本管内径の $1 / 10$ 以上	本管内径の $1 / 10$ 未満
	油脂の付着	内径の $1 / 2$ 以上閉塞	内径の $1 / 2$ 未満閉塞	－
	樹木根侵入	内径の $1 / 2$ 以上閉塞	内径の $1 / 2$ 未満閉塞	－
	モルタル付着	内径の3割以上	内径の1割以上	内径の1割未満

※材料の白化が伴ら変形は，ランクとする。
注1段差は，mm単位で測定する。また，その他の異常（木片，他の埋設物等で上記にないもの）も調査する。
注2取付け管の突出し，油脂の付着，樹木根侵入，モルタル付着については，基本的に清掃等で除去できる項目とし，除去できない場合の調査判定基準とする。
注3 判定項目は，各自治体の地域特性を踏まえて追加しても良い。
出典：下水道維持管理指針 実務編－2014 年版一公益社団法人日本下水道協会 P． 114

表 6－6－7．調査判定基準（マンホールふた）

項目							判定ランク				
							A	B	C	D	E
機 能 不 足	設 置 基 準 適 合 性	耐 荷 重 種 類 別	$\begin{aligned} & \text { 車 } \\ & \text { 道 } \end{aligned}$	大型車兩の通行あり			T－8	T－14	T－20	－	T－25
				大型車両の通行なし			－	T－8	－	－	$\begin{aligned} & \mathrm{T}-14 \\ & \mathrm{~T}-20 \\ & \mathrm{~T}-25 \end{aligned}$
			歩道				－	－	－	－	$\begin{gathered} \mathrm{T}-8 \\ \mathrm{~T}-14 \\ \mathrm{~T}-20 \\ \mathrm{~T}-25 \\ \hline \end{gathered}$
		浮上•飛散防止機能					機能なし	－	－	－	機能あり
		転落•落下防止機能					機能なし	－	－	－	機能あり
	機 能 支 障	浮上•飛散防止機能の作動					作動 しない（錠，蝶番の脱落，固着，腐食減肉が顕著）	－	－	－	正常に 作動する
		不法投棄•侵入防止機能の作動（専用工具以外の利用）					容易に 開く	－	－	－	正常に 作動する （容易に開 かない)
		転落•落下防止機能の作動					作動 しない	－	－	－	正常に作動する
		開閉機能の作動					人力では開閉不能	勾配面の腐食により開閉困難	食込み力増大による開閉困難	\because	正常に 開閉可能
$\begin{aligned} & \text { 性 } \\ & \text { 能 } \\ & \text { 爸 } \\ & \text { 化 } \end{aligned}$		外観（ふた及び受け枠の破損• クラック）					ある	－	－	－	なし
		がたつき					がたつきが ある	－	－	－	なし
		表面摩耗 （模様高さ H ）				車道	$\leqq 2 \mathrm{~mm}$	－	$2 \sim 3 \mathrm{~mm}$	$>3 \mathrm{~mm} \text { かつ }$ 鋳肌無	$>3 \mathrm{~mm} \text { かつ }$ 鋳肌有
						歩道	$\leqq 2 \mathrm{~mm}$	－	－	2～3шш	>3 пп
		腐食（鋳出し表示の消滅）					－	見えないほ ど発錆	－	見良るが少 し発錆	なし
		ふた・受け枠間の段差			急勾配	$\begin{aligned} & \text { ふたの } \\ & \text { 沈み } \end{aligned}$	$\geq 2 \mathrm{~mm}$	－	－	－	$<2 \mathrm{~mm}$
					造	ふたの 浮き	$\geqq 10 \mathrm{~mm}$				$<10 \mathrm{~mm}$
					平受け配受け	造•緩勾造	$\geqq 10 \mathrm{~mm}$	－	－	－	$<10 \mathrm{~mm}$
		高さ調整部の損傷（欠け・充填不良・クラック）					あり	－	－	－	なし
	$\begin{aligned} & \text { 周 } \\ & \text { 辺 } \\ & \text { 舗 } \\ & \text { 装 } \end{aligned}$	損慯（穴，クラック）					どちらも ある状態	$\begin{aligned} & \text { クラックあ } \\ & \text { り, かつ穴 } \\ & \text { がない } \end{aligned}$	どちらもな いま゙，受わ枠と路面と の間に隙間 ができて いる	－	なし
		ふたと周辺舖装の段差					$\geqq 20 \mathrm{~mm}$	－	－	－	$<20 \mathrm{~mm}$

出典：下水道維持管理指針 実務編－2014 年版－公益社団法人日本下水道協会 P． 148

表6－6－8．管きょ調査記録表

出典：下水道維持管理指針 実務編－2014 年版－公益社団法人日本下水道協会 P． 101

表6－6－9．管きょ調査集計表

出典：下水道維持管理指針 実務編－2014 年版－公益社団法人日本下水道協会 P． 102

表 6－6－10．マンホールふた調査票

6－6－3．腐食環境下

本実施方針における，点検•調査計画の方針を表 6－6－11～表6－6－13に示す。また，道路陥没や状態が急激に悪化する危険性が高い異状を緊急調査が必要な異状として表 6－6－14に整理した。

表6－6－11．点検•調査方針

点検方法	点検頻度	調查方法	調查頻度
マンホール目視	1 回 $/ 5$ 年	小口径：テレビカメラ 中大口径 ：潜行目視	1 回 $/ 20$ 年

表 6－6－12．点検方法

点検方法	選定理由
マンホール目視	地上からの目視点検では点検の精度が低いため， 調査員が入孔して行うマンホール目視を選定

表 6－6－13．調査方法

調査方法	選定理由
小口径 $:$ テレビカメラ 中大口径 $:$ 潜行目視	すべての管路に対してテレビカメラ及び潜行目視 による詳細調査を実施

表 6－4－14．点検結果による緊急調査が必要な異状

| 緊急調查が必要な異状 |
| :--- | :--- |
| 異状ランク A•a レベル（調査の項目参照）の発見 |
| 土砂堆積30\％以上 |
| 異状な臭気，かつマンホールに腐食あり |

腐食環境下施設の調査における項目は一般環境下施設に準ずる。

腐食環境下に対する点検は，マンホール内に入孔し，目視調査により行う。「下水道法施行規則第4条の4第 2 項による点検結果の記録等について」（平成28年3月30日事務連絡）に，点検記録簿の例が示されている。

表6－6－15に点検記録簿（案）を示す。

表6－6－15．点検記録簿（案）

点検個所住所					台帳			
マンホールNo．				点検日時	平成28年	月	日	AM• PM ：
監督員（職•氏名）								
委託事業者					現場代	理人		
監理技術者					担当技	術者		
点検項目		点検結果 （異状の有無）		異状の状態等				対処の要否
地	路面凹凸	有	無					
躯 体	破 損	有	無					
	腐 食	有	無					
	変 色	有	無					
管	破 損	有	無					
	腐 食	有	無					
	変 色	有	無					
管 体	破 損	有	無					
	腐 食	有	無					
	変 色	有	無					
流状沙	滞 水	有	無					
	堆 積	有	無					

【点検者の所感】

出典：平成 28 年 3 月 30 日事務連絡 国土交通省

6－7．概算費用の算定

6－7－1．一般環境下

事業実施における概算費用算出単価を表6－7－1 に整理した。

表 6－7－1．概算費用算出単価

項目	種別	細目	単価	算出根拠
点検	目視点検	－	$\begin{array}{r} 420 \text { 円 } / \mathrm{m} \\ (8,300 \text { 円/箇所) } \end{array}$	表6－6－1 より
調查	TV 調査	内径 800 mm 末満	2，500 円／m	表6－6－2 より
	潜行目視	内径 800 mm 以上 1500 mm 末満	900 円／m	＂
	マンホール蓋調査	－	5，800 円／箇所	参考資料に添付
計画策定	改築•修繕計画	－	600 円／m	＂
	実施方針見直し	－	46 百万円／回	＂
設計	－	－	11， 000 円／m	＂
工事	－	－	119，000 円／m	表5－2－2 より

点検•調査の概算費用を表6－7－2 に示す。

表 6－7－2．点検•調査計画事業費
単位：百万円

施設分類	工種	R3	R4	R5	R6	R7	計
		2021	2022	2023	2024	2025	
管きょ	調査					67.8	67.8
マンホールふた						5.6	5.6
計						73.4	73.4

6－7－2．腐食環境下

腐食環境下施設の概算費用算出単価は一般環境下施設に準ずる。点検の概算費用を表 6－7－3 に示す。

表 6－7－3．点検計画事業費

施設分類	工種	R3	R4	R5	R6	R7	計
		2021	2022	2023	2024	2025	
管きょ	点検	0	1.7	0	0	0	1.7

6－8．点検•調査計画のとりまとめ

「6－2．点検•調査頻度の検討」において，事業サイクルは 7 期， 1 期あたりの調査期間は 3年とし，「6－3．優先順位の設定」において，処理分区別の調査優先順位の設定を行った。1つ の処理分区の延長が 30 km を超過している場合は，調査の実現性を考慮し，流域別に処理分区 を細分化し，ブロック設定した。また，雨天時浸入水発生区域は，早期調査による施設の状態把握を行うため，表6－3－1 の優先順位に関わらず，優先順位1位の処理分区と合わせて調査を行う。

これより，本実施方針における，ブロック別調査時期を表6－8－1 に，点検調査スケジュー ルのとりまとめを表6－8－2，SM 計画事業費グラフを図 6－8－1 に示す。

表 6－8－1．ブロック別調査時期

ブロック	総延長	調査時期		一般施設		最重要施設		優先度 I＋II 延長	優先順位＊
		期	調査延長	$\phi 800 \mathrm{~mm}$ 末満	$\begin{aligned} & \phi 800 \mathrm{~mm} \text { 以上 } \\ & 1500 \mathrm{~mm} \text { 末満 } \\ & \hline \end{aligned}$	$\phi 800 \mathrm{~mm}$ 末満	$\begin{aligned} & \hline \phi 800 \mathrm{~mm} \text { 以上 } \\ & 1500 \mathrm{~mm} \text { 未満 } \\ & \hline \end{aligned}$		
雨天時浸入水発生区域	6，114． 68	1	47，353．79	5，848．70	85.30	180.68		5， 012.30	1－1
あきる野第三大塚－3	21，129．77			21， 069.82	59.95			16， 640.02	1－2
あきる野第三大塚－2	20，109．34			18，564． 35	1，202．86	342.13		7，653．47	1－3
あきる野第三大塚－1	18，557．29	2	53， 065.98	17，823．07	734.22			2，382． 26	2－1
あきる野第九玉見－1	17， 934.95			17，934．95				10，140．99	2－2
あきる野第九玉見－2	16，573．74			14，780．69	1，589．84	203.21		7，323．44	2－3
あきる野第八平高－1	19， 381.31	3	54，993．43	17， 788.64	1，100．96	491.71		6，551．85	3－1
あきる野第八平高－3	18， 951.54			17，559．17	1，021．53	305.39	65.45	4，160．69	3－2
あきる野第八平高－2	16， 660.58			16，289．93		370.65		1，878．49	3－3
あきる野第十一の七－1	18，851． 62	4	52，509．98	18，389． 37	165.62	296.63		6，127． 58	4－1
あきる野第十一の七－2	18， 222.41			18，007． 30	63.75	151.36		5，367． 36	4－2
あきる野第一一ノ谷－2	15， 435.95			14，785．20	650.75			4，496．42	4－3
あきる野第一一ノ谷－1	12， 439.56	5	53， 442.93	12， 439.56				241.79	5－1
あきる野第四東秋川	14， 908.58			14， 475.44	268.36	140.01	24．77	5，215．07	5－2
あきる野第二の二南秋留	18，711．24			17，447．93	1，263．31			5，033．68	5－3
あきる野第十二山田	7，383．55			6，961．94	421.61			2，650．37	5－4
あきる野第十北伊奈	9，875．02	6	46， 365.04	9，826．01	49．01			4，252．91	6－1
あきる野第六小宮	18，844．16			17，459．83	1，384． 33			3，510．33	6－2
あきる野第十一の六	17， 645.86			17，394．46		251.40		2，384． 88	6－3
あきる野第五菅瀬	17，807． 42	7	53，295．78	17，435．47	371.95			2，315．99	7－1
あきる野第七秋留台	8，152．15			8，146． 86	5． 29			1，562．08	7－2
あきる野第十一の四	9，234．42			9，234．42				1，507．04	7－3
あきる野第十一の三	5， 054.59			5，054．59				753.30	7－4
あきる野第十一の一	750.49			750.49				89． 40	7－5
あきる野第二の一南秋留	5，793．48			5，793．48					7－6
あきる野第十一の五	6，503．23			6，503．23					7－7
あきる野第十一の二	－	－	－	－	－	－	－	－	－
日の出第一大久野	－	－	－	－	－	－	－	－	－
計	361， 026.93		361， 026.93	341，916． 20	10， 353.34	2，552．49	90.22		

※処理分区内で優先度 I＋II 延長が長いブロックを優先している。

表 6－8－2．点検調査スケジュールのとりまとめ

概要	年間調査 最大延長	年間改築 最大延長	年間最大事業費	備考
	km	km	百万円	
各期において 2 年調查， 3 年改築を実施し 7 期で全区域の事業サイクルを計画する。	29． 14 （第3期 2031年）	$\text { 1. } 3$ （事業予算 から決定）	$\begin{array}{r} 454.3 \\ \text { (第 } 3 \text { 期 } \\ 2031 \text { 年) } \end{array}$	調査期間 20 年，改築期間 25 年改築工事費を 150 百万円／に固定

※年間最大事業費はポンプ場施設の事業費を含む。

図 6－8－1．SM 計画事業費グラフ

本実施方針の健全度の推定はあきる野市の調査結果を使用しておらず，健全率予測式2017 （全管種）で推定を行っているため，実情より低い健全度で改築事業費を推定している可能性がある。ストックマネジメント計画を運用していくうえで，今後は調査結果をもとにした あきる野市独自の健全率予測式を作成したらえで，市の財政状況を勘案し，PCDA サイクルに よる実施方針の見直しを行うことが重要である。

表 6－8－3に SM 計画スケジュール，図 6－8－2 調查計画図を添付する。

＊1計画策定の委託積用については，下水道用設計标準跑掛表（令和2年度版）にて積算した。				
＊2 各期の設計の初年度は基本設計（工法選定および年度㓤の見直しなど）と次年度工事の詳徉設計（マンホールふた交換の設計を含む）を行い，2年目以降は次年度工事の見直し設計を行う。				
＊3対策工事はあきる野市の事業実施スケジユールより，R111開始としてスケ ジュールを策定した。				
※ 4 実施設計の委託筫は，すべてを更生工法として下水道用設計標準歩掛表 （令和2年度版）にて積算した。				
1－2の改监を行うものとし，マンホール本体は劣化状況に応じて対応を行う。				
＊ 6 各期の工事頼の上限は，長期改築事業シナリオより 150 百万円／年程度と した。				
＊ 7 第 2 䐓の調查後に実施方針の見直しを行い，以降，6年毎に実施方針の見直しを行うこととする。（状能監視保全である管路施設についてのみ）				
工任			單侕	蜼
点俗	マこ木ール		11，000	
㺺査	TVimata	内隻 800 mm 米胹	2，500	m／m
	潽炓梘		900	m／m
	マンホール	丵路査	5，800	A／
工事			119，000	m／m
	改嚮•䜌䋍		600	m／m
			46	百万P／／回
			11，000	m／m

