

6－6．点検•調査方法の検討

6－6－1．点検•調査方法の整理

（1）点検•調査方法の種類
管路施設の点検•調査は，清掃も含め，合理的な組み合わせについて検討することが望 ましく，従来どおりに地上からの目視による点検やテレビカメラによる調査はもとより，簡易調査によってスクリーニングを行った後にテレビカメラ調査等を実施する方法等もあ る。

図 6－6－1 に，点検•調査の体系分類を示す。また，次頁以降に各点検•調査の概要を示 す。

出典：「B－DASH（管渠マネジメントシステム技術）ガイドライン 国土技術政策総合研究所」P． 12 に追記図 6－6－1．点検•調査方法の体系分類図

（1）目視点検

目視による点検工は，調查員がマンホールに入らず，地上部よりマンホールおよび本管 の異状の有無を，点検ミラーとライトを用い可視範囲を目視により点検する。

図6－6－2．目視点検工の作業模式図

（2）マンホール目視調査

マンホール目視調査工は，調査員がマンホールに入り，管口からライトを照らし，可視範囲を目視により点検する。

図6－6－3．マンホール目視調査工の作業模式図

（3）管ロカメラ調査

管ロテレビカメラは下図に示すように，伸縮可能な操作棒の先にカメラとライトを取り付けたものであり，これを地上からマンホールに挿入し，地上にいる調査員が手元のモニ ターを見ながら管内を点検するものである。

図6－6－4．管ロカメラ点検エの作業模式図

（4）潜行目視調査

潜行目視調査は，歩行可能な $\phi 800 \mathrm{~mm}$ 以上の本管について調査員が管内に潜行し，目視に よりその性状を把握する。なお，流量が多い場合や酸欠，有毒ガス発生の危険性が予想さ れる場合は，上流堰高の調整や十分な換気等，安全に調査できる環境を整える。なお，調査員の安全性が確保できない場合は，大型のテレビカメラによる調査を考慮する。

図6－6－5．潜行目視調査工の作業模式図

（5）テレビカメラ調査

テレビカメラ調査は，本管内調査用テレビカメラ（自走式または牽引式）を使用して，本管内の性状を把握し，本管の清浄（高圧洗浄車）と並行して実施する。マンホール間を一工程としてテレビカメラを移動させながら，直視または側視の映像を地上に設置したモ ニターテレビに映し出し，本管の劣化度や流下能力および浸入水等の状況を DVD またはCD等に連続的に収録するとともに，モニター画面から写真撮影し整理•保管する。

図6－6－6．テレビカメラ調査工の作業模式図

（6）展開広角カメラ

展開広角カメラは，画角 190 度の広角レンズを搭載しているテレビカメラ機器であり，本調査機器の管内の展開画像を取得し，現場での異状判断を行わないことで，1 スパンを速 く調査するスクリーニング技術である。

これまでの調查方法と比較すると，個別の側視調査が不要となることで調査効率が上が り，現場での作業時間を短縮できる。

広角レンズを搭載したタイプと複数の特殊鑑とテレビカメラを搭載したタイプがある。

図6－6－7．展開広角カメラの外観

図6－6－8．展開広角カメラによる展開画像上の異状診断実施例

（7）画像認識型カメラ

画像認識型カメラは，高度な画像認識技術による異状箇所の自動検出，内臓電源•軽量 ケーブルによる長距離調査を実現するスクリーニング調査技術である。

これまでの調查方法と比較すると，個別の側視調查や現場での異状診断が不要となるこ とで調査効率が上がり，現場での作業時間を短縮できる。

図6－6－9．画像認識型カメラの外観
（8）浮遊式カメラ
浮遊式テレビカメラは浮体の上に搭載された複数のテレビカメラにより管内を流下しな がら管壁内の映像を記録するものである。流量が多く潜行目視調查が困難である場合など に，水面上の壁面を簡易に調査することができる。

図6－6－10．浮遊式カメラの外観

（2）点検•調査方法の比較

（1）点検方法の比較
点検方法として，マンホール目視調査と管ロカメラ調査の比較表を示す。

表6－6－1．点検手法の比較表

	目視点検	マンホール目視調査	管ロカメラ調査
概略図			
適用範囲	管径： 600 mm 未満 マンホール深： 3 m 以下 マンホール：内径 $1,500 \mathrm{~mm}$ 末満	管径：範囲なし マンホール深：範囲なし マンホール：入孔可能な大きさ	管径： $200 \mathrm{~mm} \sim 700 \mathrm{~mm}$ 土被り：7m 以下 マンホール：内径 900 mm 以上 可視範囲： 15 m 程度（クラック 等は 3 m 程度）
適用条件	水深，流速は問わない	水深，流速は問わない	水深，流速は問わない
特 徴	－マンホール内への立ち入りを行わず，管内状況を把握でき る。 －点検ミラーとライトを用いる ことにより，管口直近の異状 を発見できる。 －日進量が速い。	－マンホール内への立ち入りが必要である。 －管口直近の異状を直接目視で確認できる。	－マンホール内への立ち入りを行わず，管内状況を把握でき る。 －上下流からの調査により， 30 m程度の範囲で緊急性が高い異状を発見できる。 －水平方向の継手ズレの発見は困難である。 －管径 800 mm 以上では視認性が低下する。
日進量	$\begin{gathered} 40 \text { 基/日※1 } \\ (20 \mathrm{~m} / \text { スパン*2 とすると } 800 \mathrm{~m} / \text { 日 }) \end{gathered}$	$\begin{gathered} 30 \text { 基/日※1 } \\ \left(20 \mathrm{~m} / \text { スパン } \mathrm{K}_{2} \text { とすると } 600 \mathrm{~m} / \text { 日 }\right) \end{gathered}$	$\begin{gathered} 30 \text { 基/日*1 } \\ (20 \mathrm{~m} / \text { スパン*2 とすると } 600 \mathrm{~m} / \text { 日 }) \end{gathered}$
コスト （経費込： 税抜）	$\begin{gathered} 420 \text { 円/m } \\ (8,300 \text { 円/箇所) } \end{gathered}$	$\begin{gathered} 550 \text { 円/m } \\ (11,000 \text { 円/籃所) } \end{gathered}$	$\begin{gathered} 650 \text { 円/m } \\ (13,000 \text { 円/箇所) } \end{gathered}$

※1．下水道管路管理積算資料－2019－公益財団法人日本下水道管路管理業協会 P． 97 より
なお，「B－DASH（管渠マネジメントシステム技術）ガイドライン 国土技術政策総合研究所」で は，管ロカメラ調査の日進量が $1,200 \mathrm{~m} /$ 日と示されている。
※2．市の小口径管路の平均スパン長は， $20 \mathrm{~m} /$ スパン程度である。（ $20.95 \mathrm{~m} /$ スパン）
※3．中間スラブがある場合は，マンホール内に入る必要がある。

