

（2）マンホールふたの被害規模

マンホールふたの被害規模の検討は，設置道路において不具合（マンホールふたのス リップ，がたつき，段差）が生じた場合の影響が大きい道路を抽出し，ランク付けを行 った。

影響度の評価視点として，表 3－2－5に表 3－2－1 を再掲する。

表 3－2－5．影響度の評価視点（再掲）

評価の視点	評価項目	例	内容
機能上重要 な施設	下水機能上重要路線	幹線管渠／枝線	－処理場までの流下機能を確保 する上で重要な管渠
		処理場に直結した管渠	
	防災上重要路線	処理場と果要な防災拠点をつ なぐ管渠	－被災时の下水機能を確保する上で重要な管渠
社会的な影響が大きな施設	軌道横断の有無	平面軌道を横断／横断なし	－日常または緊急時に交通機能確保等を図る上で重要な管渠
	河川横断の有無	河川横断あり／横断なし	
	緊急輸送路の下	緊急輸送路下に布設／－${ }^{\text {a }}$ 他	
事故時に対応が難しい施設	ボトルネック	伏越し／－${ }^{\text {a }}$ 他	－不具合が生じた場合に対応が難しい管渠
		事故時の下水の切り回しが難 しい管渠／その他	
		坜設深度が深い幹線管渠	
		重要埋設文化財指定区域内に埋設されている管渠	

出典：ストックガイドライン

表 3－2－5より，緊急輸送路下に設置されたマンホールふたは，日常または緊急時に交通機能確保等を図るらえで影響が大きいと考えられるため，交通機能の重要性を考慮し，以下の 3 つの道路下の順に影響度のランクを設定した。また，図 3－2－3 に緊急輸送路位置図を示す。
（1）特定緊急輸送路下
緊急輸送路のうち特に沿道建築物の耐震化を図る必要がある道路。
（2）一般緊急輸送路下
特定緊急輸送路を除く緊急輸送路。
（3）その他
① および（2）いずれにも該当しない道路。（1）および（2）道路横の歩道＊。
※異状発生時の車両の交通に影響が小さいと考えられるため

出典：東京都耐震ポータルサイト 緊急輸送道路図に追記図 3－2－3．緊急輸送路位置図

表 3－2－6に示すとおり，影響度ランクを設定する。
表 3－2－6．被害規模のランク設定（マンホールふた）

施設	影響度ランク	箇所数	割合
特定緊急輸送路下	3	743	5.00%
一般緊急輸送路下	2	512	3.00%
その他	1	14,521	92.00%
計	-	15,776	100.00%

図 3－2－4に被害規模ランク図（マンホールふた）を示す。

